Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 341: 122866, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37926409

RESUMO

The effects of trace sulfadiazine (SDZ) and cast-iron corrosion scales on the disinfection by-product (DBP) formation in drinking water distribution systems (DWDSs) were investigated. The results show that under the synergistic effect of trace SDZ (10 µg/L) and magnetite (Fe3O4), higher DBP concentration occurred in the bulk water with the transmission and distribution of the drinking water. Microbial metabolism-related substances, one of the important DBP precursors, increased under the SDZ/Fe3O4 condition. It was found that Fe3O4 induced a faster microbial extracellular electron transport (EET) pathway, resulting in a higher microbial regrowth activity. On the other hand, the rate of chlorine consumption was quite high, and the enhanced microbial EET based on Fe3O4 eliminated the need for microorganisms to secrete excessive extracellular polymeric substances (EPS). More importantly, EPS could be continuously secreted due to the higher microbial activity. Finally, high reactivity between EPS and chlorine disinfectant resulted in the continuous formation of DBPs, higher chlorine consumption, and lower EPS content. Therefore, more attention should be paid to the trace antibiotics polluted water sources and cast-iron corrosion scale composition in the future. This study reveals the synergistic effects of trace antibiotics and corrosion scales on the DBP formation in DWDSs, which has important theoretical significance for the DBP control of tap water.


Assuntos
Desinfetantes , Água Potável , Poluentes Químicos da Água , Purificação da Água , Desinfecção/métodos , Sulfadiazina , Cloro , Corrosão , Ferro , Desinfetantes/farmacologia , Purificação da Água/métodos , Antibacterianos , Poluentes Químicos da Água/análise
2.
Chemosphere ; 286(Pt 2): 131686, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34333184

RESUMO

Change in water quality was investigated with laboratory-scale ozone-biological activated carbon filters using copper-modified granular activated carbon (Cu/GAC) and unmodified granular activated carbon (GAC). In the first seven days of the experimental period, Cu/GAC removed organic matter more efficiently owing to its enhanced adsorption capacity. As the running time increased, the amount of disinfection by-products (DBPs), dissolved organic carbon, and extracellular polymeric substances (EPS) increased sharply in the effluent of the Cu/GAC filter (CCW). More importantly, the EPS suspended in the CCW exhibited weaker flocculating efficiency and hydrophobicity, causing more active chemical reactions between chlorine and EPS substances. The copper species significantly limited the microbial biomass (0.01 nmol/L adenosine triphosphate) but stimulated the secretion of significant amounts of EPS by microorganisms for self-protection. Furthermore, the microbial community in the bulk water was successfully shaped by Cu/GAC, resulting in a continuous supply of EPS-derived DBP precursors and a sharp rise in chlorine consumption in the downstream drinking water distribution. Therefore, use of modified GAC materials, similar to Cu/GAC, as carrier materials for biological activated carbon (BAC) treatment remains controversial, despite enhanced pollutant adsorption capacity. This is the first study to reveal the mechanism of BAC-modified materials for water quality stability. The study potentially contributes to a comprehensive understanding of the effects of biofilm transformation and microbial community succession on drinking water quality. These results showed that tap water safety risks could be reduced by improving BAC pretreatment in drinking water treatment plants.


Assuntos
Água Potável , Microbiota , Poluentes Químicos da Água , Purificação da Água , Carvão Vegetal , Desinfecção , Matriz Extracelular de Substâncias Poliméricas/química , Filtração , Poluentes Químicos da Água/análise , Qualidade da Água
3.
J Environ Sci (China) ; 108: 70-83, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34465438

RESUMO

Iron and nitrate (NO3-) are dominant physiologically required nutrients for phytoplankton growth, and iron may also play a key role in the marine nitrogen cycle. In this study, we investigated the temporal and spatial distributions of dissolved iron (DFe) and Fe(II) in the surface waters of Jiaozhou Bay (JZB) from April 2 to July 26, 2017. High concentrations of DFe and Fe(II) predominantly occurred in nearshore and estuarine stations and concentrations were generally higher in April and May. The highest DFe concentration was observed along the coast of Hongdao (51.55 nmol/L) in May, while the lowest concentration was observed in the western coastal region (2.88 nmol/L) in April. The highest and lowest Fe(II) concentrations were observed in the Licun estuary (22.42 nmol/L) and outer bay (0.50 nmol/L) in May, respectively. We calculated the proportions of nitrate, nitrite, and ammonium in dissolved inorganic nitrogen (DIN) as well as the ratio of Fe(II) to DFe in all four months. The mean Fe(II)/DFe ratio was 0.48 in April, 0.43 in May, 0.69 in June, and 0.32 in July. The mean ratio of NO3- to DIN was 0.78 in April, 0.54 in May, 0.20 in June, and 0.62 in July. NO3-/DIN continuously decreased in the first three months, while Fe(II)/DFe remained high, which suggests that the reduction of iron and nitrate occurred simultaneously in the surface waters of JZB.


Assuntos
Ferro , Nitratos , Baías , Ferro/análise , Fitoplâncton , Água do Mar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA